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Introduction

Climate plays an important role in the distribution of
species, and past periods of climate change have
corresponded with species' range contraction and
expansion (Pearson and Dawson 2003). Among other
tools, scientists and conservation practitioners can use
"climate envelope models" to predict the effects of
future climate change on wildlife. These models
determine the relationship between species occurrences
and current climate (temperature and precipitation
patterns) using mathematical relationships. The models
can then be used to produce "prediction maps" that
highlight areas where climate in the future may be
similar to climate in areas currently occupied by the
species (Figure 1).
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Figure 1. Simplified representation of a climate envelope
model for a hypothetical species. In this example, the species
occurrences points (black dots) fall within a certain range of
temperatures (represented by different colors, ranging from
blue [cooler] to red [warmer]) in the present time period
(upper left). The model highlights the current suitable area for
the species based on temperatures at the occurrence points
(upper right). The hypothetical future climate map (bottom
left) illustrates a warming scenario. The model then predicts
suitable future suitable areas for the species (bottom right). As
suitable temperatures shift farther north, so does the
predicted species' range.

Credit: David Bucklin
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Climate envelope models fall within a broader category
of models called species distribution models (SDMs),
which can incorporate all types of environmental
variables (e.g. climate, habitat type, land use, geology,
human influence). (From this point we will use species
distribution model, or SDM, to refer to all models in this
document, regardless of the variables included.) These
environmental variables and the species' occurrence
data are the only input data that are required for SDMs.
While acquiring and preparing these data is a
straightforward procedure, scientists using SDMs have
many important choices to make about which
environmental variables to use. In addition, there are
important choices about which SDM methods to use,



such as the modeling algorithm (the function used to
relate species' occurrence data and environmental
variables) and variable selection process. To make SDMs
useful in planning for future environmental changes, it
is important to know how each of the choices regarding
input data and modeling methods affects model outputs.
In order to measure the effect of these choices,
scientists can build two models in exactly the same way
except for one parameter (e.g., including a land-use
variable or excluding it), and then compare the two
model's outputs. Models can be compared using
performance metrics (which tell how well a model can
predict "independent" species occurrences, which are
those not used to build the model), and prediction map
comparisons (which tell how similar or different
prediction maps from different models are). This
document summarizes several projects using SDMs for
Florida's threatened and endangered (T&E) and
endemic vertebrate species to examine how model
outputs are affected by choices made in the modeling
process. Table 1 summarizes the SDM choices that were
covered in these projects, along with the section(s) in
this document that address each particular choice, the
strength of each choice's effect on SDM outputs, and
recommendations related to each choice for scientists
building species distribution models. Each of the
following sections of this document describe
manuscripts published in scientific journals that
examined one or more of the choices; for more
information on any particular study, see the associated
reference.

I. Choice of Contemporary Climate
Data

When using SDMs to determine relationships between
species and the current climate, the user first needs to
select a contemporary climate dataset. To determine
whether the choice of contemporary climate dataset has
an effect on SDM outcomes, we used two different late
20™-century climate datasets to build the models: CRU
(Climate Research Unit;
https://crudata.uea.ac.uk/cru/data/hrg/) and WorldClim
(http://www.worldclim.org/). Both climate datasets
(CRU and WorldClim) have worldwide coverage and use
long-term weather station observations (around 40 years
for each) to create maps of average monthly
temperature and precipitation. However, the research
groups that distribute the two datasets used different
techniques to create them, and the datasets do not
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match exactly in geographic coverage either, as shown
in Figure 2.

Figure 2. Example of differences in spatial coverage in
southern Florida, Cuba, and the Bahamas, between two grid-
based contemporary climate data sets, Climate Research Unit
(CRU) and WorldClim.

Credit: David Bucklin

For 12 T&E species in Florida, we used a variable
selection process to identify which monthly
temperature and precipitation variables were most
associated with species presences. We then used this set
of variables to build models using both CRU and
WorldClim datasets.

Our results for these 12 species showed that neither
model performance nor the prediction maps (for the
current time period only) were significantly different
depending on which contemporary climate dataset was
used (Watling et al. 2014). Figure 4 displays an example
of this for the Florida scrub jay (Aphelocoma
coerulescens), showing that the broad patterns of the
prediction maps using the two different contemporary
climate datasets are very similar. Given this result, we
found no reason to prefer either of the contemporary
climate datasets, concluding that modelers can base
their choice of dataset on practical aspects such as
availability, spatial resolution, or geographic coverage.


https://crudata.uea.ac.uk/cru/data/hrg/
http://www.worldclim.org/

Figure 3. (Aphelocoma coerulescens).
Credit: David Bucklin
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Figure 4. Present time period SDM prediction maps for the
Florida scrub jay built using different contemporary climate
datasets (CRU and WorldClim), showing high similarity.
Credit: David Bucklin

Il. Choice of Future Climate Data

There are many choices to make when choosing future
climate data for projecting SDMs, due to the methods
climate scientists use to create future climate
projections. To predict climate in future decades and
centuries, climate scientists employ global climate
models (GCMs), which incorporate atmospheric,
oceanic, land, sea ice, and other relevant components to
simulate global climate patterns. Global climate models
are complex and generally produce climate projections
at coarse spatial scales (i.e., one projection every 100-
200 km; Maraun et al. 2010). There are several dozen
GCMs currently in use around the world. In addition, to
predict how increased levels of carbon dioxide (CO,) will
affect future climate, each GCM can be run using
multiple future "scenarios" describing different levels of
atmospheric CO,. The combination of all these factors
(GCM and CO,scenario) creates a large number of
unique projections of future climate for scientists to
choose from.
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To test how much of an effect GCM choice has on SDMs,
we projected the 12 species' SDMs (described in the
previous section) into the future (2050) using 3 different
GCMs. The results showed that discrepancies can occur
among SDM prediction maps using different future
GCMs, exemplified for the Florida scrub jay in Figure 5
(Watling et al. 2014). The dissimilarity between SDMs
prediction maps using different GCMs (in the future)
was higher than that among contemporary prediction
maps (Figure 4), indicating less similarity between
future GCMs than between contemporary climate
datasets.

Model Predictions - 3 future climate GCMs

Figure 5. Future time period (2050) prediction maps from
SDMs using three different GCMs (labeled in bottom left
corner of each panel) for the Florida scrub jay.

Credit: David Bucklin

lll. Global and Regional Climate
Models

Global climate models are useful for projecting climate
changes over large areas (e.g., continents), but due to
their coarse scale, less useful for representing local or
regional climates—the scales at which conservation
planning generally takes place. To address this issue,
climate scientists often develop complex regional
climate models (RCMs) to "downscale" (create higher-
resolution) projections from GCMs to much finer scales
(e.g., one prediction every 1-50 km), but are limited to
one region, using information on factors that influence
the climate for that particular region. In contrast to
RCMs, another method for downscaling GCMs is
"statistical" downscaling, which uses statistical
relationships between local and global factors
influencing climate to downscale GCM projections (for
either one region or the entire world), rather than
developing a new climate model (as in RCMs).

To test the effect of RCM vs. statistically downscaled
future climate data used for SDMs, we obtained
downscaled climate data from both RCM (Stefanova et
al. 2012) and statistically-derived (non-RCM) datasets



(Tabor and Williams 2010) for 2 GCMs and one climate
scenario. Both datasets have ~10-km resolution, and we
restricted the analysis to the southeastern United States
from 2041-2060. We then created models for 14 of
Florida's T&E species and projected them using each of
the four different representations of future climate.

We found that the type of downscaled future climate
data (RCM or non-RCM) contributed to moderate to high
variation in the SDM prediction maps (Bucklin et al.
2013). For example, for the Everglade snail kite
(Rostrhamus sociabilis plumbeus), the SDM prediction
map using non-RCM projections predicts loss of
suitability throughout much of southern Florida, but
one using RCM projections does not (Figure 5).
Discrepancies between prediction maps using RCM vs.
non-RCM projections were similar to discrepancies
among maps using different GCMs projections (as
displayed in Figure 4). In general, RCM and non-RCM
projections tended to disagree more on future monthly
precipitation projections than temperature. Because of
the importance of water in many of Florida's eco-
systems, RCM projections (which offered more refined
precipitation estimates than the non-RCM projections)
should offer better SDM predictions for future suitable
areas for Florida's wildlife.

Figure 6. (Rostrhamus sociabilis plumbeus).

Credit: Julio Mulero
(https://www.flickr.com/photos/juliom/5431106652),
License: CC-BY-NC-ND 2.0
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Figure 7. Future time period (2050) SDM prediction maps
using non-RCM (left) and RCM (right) climate datasets for the
Everglade snail kite, illustrating the absence of suitable
conditions in southern Florida predicted by the non-RCM
model.
Credit: David Bucklin

IV. Types of Climate Variables

Another choice users of SDMs have to make is the type
of climate variables to use in the modeling process.
Contemporary climate datasets like CRU and WorldClim
are often prepared as monthly averages (e.g., mean
temperature in January, mean precipitation in May) or
as bioclimate variables, which describe seasonal
conditions and/or climate extremes (e.g., maximum
temperature of the warmest month, precipitation of the
driest season). Bioclimate variables are generally
assumed to be more informative for SDMs because
certain climatic extremes may be directly limiting to
species due to tolerance limits for certain hot, cold, dry,
or wet extremes. To test this assumption, we built SDMs
using both monthly and bioclimate variables for 12 of
Florida's T&E species, and predicted their distributions
for the contemporary period only.

We found no difference in the performance of models
built with monthly vs. bioclimate variables (Watling et
al. 2012). However, we did note some discrepancy in
prediction maps for some species, like the American
crocodile (Crocodylus acutus; Figure 8). In addition, for
SDMs for species with large ranges, bioclimate variables
may be preferable to monthly because of the differences
in seasons between the northern and southern
hemispheres (for example, the temperature in January
represents mid-winter in the North, but mid-summer in
the South, and a species occurring in both hemispheres
would experience a wide range of conditions in the

same calendar month).
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Figure 8. (Crocodylus acutus).
Credit: UF/IFAS
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Figure 9. Present time period SDM prediction maps for models
built using monthly climate variables (left) and bioclimate
variables (right) for the American crocodile, with greatest
discrepancies in suitability found in extreme southern Florida
and the Florida Keys.

Credit: David Bucklin

V. Inclusion of Non-Climate Variables
While we know that climate is an important driver of
species distributions, we also wanted to know how
influential other (non-climate) variables could be in
SDMs when used in combination with climate. To test
this, we compared models built with climate variables
only to those built with climate variables plus variables
from several different sets (including land use, human
influence, and extreme weather). Models were
developed for 14 species that are endemic to Florida, for
the contemporary climate period only.

Using metrics that calculate how important individual
variables are within a model, we found that climate
variables were generally much more important than
non-climate variables, regardless of which non-climate
variables were combined with them (Bucklin et al.

2015). Performance metrics were not highly variable
among any of the models, though we did find that the
climate + human-influence models performed
significantly better than climate-only models, and that
prediction maps from these two models were also the
most different from one another. We also found that
SDMs including non-climate predictors tended to
produce more "refined" prediction maps (smaller
suitable areas predicted), as illustrated by prediction
maps for the sand skink (Neoseps reynoldsi) in Figure 10.

Figure 10. (Neoseps reynoldsi).

Credit: USGS
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Figure 11.Present time period SDM prediction maps for the
Sand skink, using four different sets of input variables. In
comparison to the climate variables only map (upper left),
note the "refined" predictions in models including human
influence variables (upper right), and to a lesser extent land
cover variables (lower left).

Credit: David Bucklin
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VI. Bringing It All Together

To get a unified view of what contributes most to
variation in model performance and prediction maps,
we conducted a comprehensive "uncertainty analysis"
focusing on a number of choices of input data and
modeling methods (some also addressed in previous
sections), including:

«  Contemporary climate dataset (see section I)

+  Global Climate Models (GCMs; see section II)

+  CO, emissions scenario

«  Algorithm

+  Variable selection process (uncorrelated vs. no
removal of correlated variables)

This analysis highlighted each factor's relative
contribution to SDM variation (uncertainty). Models
were run for 15 species for every combination of the 7
factors, resulting in 48 different models and prediction
maps for the contemporary period, and 288 prediction
maps (48 x 6 future representations of climate) for the
future time period (for each species).

We found that model performance and spatial
predictions were most affected by the modeling
algorithm applied in the SDM, which strongly
outweighed all other factors (Watling et al. 2015). (It is
important to note, however, that in many SDM studies,
modelers do not use more than one algorithm.) In
prediction maps, though, a small amount of variation
was also attributable to GCM (for future predictions) and
the variable selection process (Figure 12). In addition,
variation in the maps was greater in the northern edges
of the species' ranges, a direction many of Florida's
species are expected to move as the climate warms.
These results give strong support for "ensemble"
methods for SDMs. Ensemble methods account for
uncertainty in a factor by combining models built with
several different versions of the factor. For example,
SDM users employing ensemble methods could
combine prediction maps from multiple algorithms,
GCMs, or even species (if they are considering how a
group of species may respond to climate change). The
ensemble method highlights areas of agreement (and
disagreement) between models, giving users a higher
level of certainty in their predictions.
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Figure 12. Boxplots showing the partitioning of variance (a
measure of how strongly a factor contributes to variation in
model outputs) associated with seven sources of uncertainty
in species distribution models, indicating that algorithm is a
major source of variation in species distribution models.
Credit: Adapted by authors from Watling et al. (2015)

Conclusion

While SDMs rely on simplified assumptions about
species' relationships with their environment, they are
still an important tool for understanding how wildlife
may respond to environmental changes, and in
particular climate change. This document has
summarized how certain input data and modelling
choices can affect SDM outputs for T&E and endemic
species in Florida. Our results regarding the strength of
the effect of each choice on model outputs (both model
performance metrics and prediction maps), and
recommendations regarding each of these choices are
given in Table 1.

Results of this work suggest that scientists building
SDMs for estimations of wildlife responses to future
climate change should focus on using a multiple-
algorithm ensemble to project the models for several
different representations of future climate. For regional
studies, it can be beneficial to use higher-resolution
regional climate model (RCM) datasets, when available.
In addition, non-climate variables can contribute
important information to SDMs, especially when
modelers have specific knowledge about how these
variables relate to the species, and want more specific
range predictions.



With a better understanding of the factors that influence
SDM performance and predictions, we can provide
better estimates of certainty for SDM predictions. SDMs
can generally predict how areas of suitable climate may
change for a certain species, but they alone cannot tell
us how a certain species will actually respond to
changes in climate. In general, a species may respond to
climate change in three ways: adjust to new conditions
in-place, move to new areas with suitable climates, or go
extinct. For some species (e.g., those with ranges
restricted to small islands), moving to new areas may
not be an option. SDMs can inform conservation
planning that aims to allow species to both adapt in
place and (for those that are able to) move to newly
suitable areas. Such planning will likely minimize loss
of biodiversity due to climate change.
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Tables

Table 1. Choices related to SDM variables and the modeling process, the sections that cover each choice in this
document, the strength of the choice's effects on SDM outputs, and recommendations for SDM users based on work
focused on Florida's T&E and endemic species.

Species distribution Section(s) in this | Strength of effect Recommendation(s)

model choice related to... | document on SDM outputs

Input data

Contemporary climate I, VI Minor Use WorldClim, CRU (or similar) long-term climate

data dataset

Future climate data I, 11, VI Strong Use RCMs for regional studies; use ensemble methods to

combine predictions from multiple GCMs/RCMs

Type of climate variables \% Minor Use either bioclimate or monthly variables; bioclimate
preferred for species with large ranges

Non-climate variables \% Moderate Combine with climate for more specific range predictions

Modeling methods

Algorithm VI Strong Build models using more than one algorithm; use
ensemble methods to combine predictions from multiple
algorithms

Variable collinearity VI Minor Dependent on algorithm, but generally good practice to
remove highly correlated variables for SDMs used for
prediction

1This document is WEC375, one of a series of the Department of Wildlife Ecology and Conservation, UF/IFAS Extension. Original publication
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