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Introduction 
Climate plays an important role in the distribution of 
species, and past periods of climate change have 
corresponded with species' range contraction and 
expansion (Pearson and Dawson 2003). Among other 
tools, scientists and conservation practitioners can use 
"climate envelope models" to predict the effects of 
future climate change on wildlife. These models 
determine the relationship between species occurrences 
and current climate (temperature and precipitation 
patterns) using mathematical relationships. The models 
can then be used to produce "prediction maps" that 
highlight areas where climate in the future may be 
similar to climate in areas currently occupied by the 
species (Figure 1). 

 
Figure 1. Simplified representation of a climate envelope 
model for a hypothetical species. In this example, the species 
occurrences points (black dots) fall within a certain range of 
temperatures (represented by different colors, ranging from 
blue [cooler] to red [warmer]) in the present time period 
(upper left). The model highlights the current suitable area for 
the species based on temperatures at the occurrence points 
(upper right). The hypothetical future climate map (bottom 
left) illustrates a warming scenario. The model then predicts 
suitable future suitable areas for the species (bottom right). As 
suitable temperatures shift farther north, so does the 
predicted species' range. 
Credit: David Bucklin 

Climate envelope models fall within a broader category 
of models called species distribution models (SDMs), 
which can incorporate all types of environmental 
variables (e.g. climate, habitat type, land use, geology, 
human influence). (From this point we will use species 
distribution model, or SDM, to refer to all models in this 
document, regardless of the variables included.) These 
environmental variables and the species' occurrence 
data are the only input data that are required for SDMs. 
While acquiring and preparing these data is a 
straightforward procedure, scientists using SDMs have 
many important choices to make about which 
environmental variables to use. In addition, there are 
important choices about which SDM methods to use, 
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such as the modeling algorithm (the function used to 
relate species' occurrence data and environmental 
variables) and variable selection process. To make SDMs 
useful in planning for future environmental changes, it 
is important to know how each of the choices regarding 
input data and modeling methods affects model outputs. 
In order to measure the effect of these choices, 
scientists can build two models in exactly the same way 
except for one parameter (e.g., including a land-use 
variable or excluding it), and then compare the two 
model's outputs. Models can be compared using 
performance metrics (which tell how well a model can 
predict "independent" species occurrences, which are 
those not used to build the model), and prediction map 
comparisons (which tell how similar or different 
prediction maps from different models are). This 
document summarizes several projects using SDMs for 
Florida's threatened and endangered (T&E) and 
endemic vertebrate species to examine how model 
outputs are affected by choices made in the modeling 
process. Table 1 summarizes the SDM choices that were 
covered in these projects, along with the section(s) in 
this document that address each particular choice, the 
strength of each choice's effect on SDM outputs, and 
recommendations related to each choice for scientists 
building species distribution models. Each of the 
following sections of this document describe 
manuscripts published in scientific journals that 
examined one or more of the choices; for more 
information on any particular study, see the associated 
reference. 

I. Choice of Contemporary Climate 
Data 
When using SDMs to determine relationships between 
species and the current climate, the user first needs to 
select a contemporary climate dataset. To determine 
whether the choice of contemporary climate dataset has 
an effect on SDM outcomes, we used two different late 
20th-century climate datasets to build the models: CRU 
(Climate Research Unit; 
https://crudata.uea.ac.uk/cru/data/hrg/) and WorldClim 
(http://www.worldclim.org/). Both climate datasets 
(CRU and WorldClim) have worldwide coverage and use 
long-term weather station observations (around 40 years 
for each) to create maps of average monthly 
temperature and precipitation. However, the research 
groups that distribute the two datasets used different 
techniques to create them, and the datasets do not 

match exactly in geographic coverage either, as shown 
in Figure 2. 

 
Figure 2. Example of differences in spatial coverage in 
southern Florida, Cuba, and the Bahamas, between two grid-
based contemporary climate data sets, Climate Research Unit 
(CRU) and WorldClim. 
Credit: David Bucklin 

For 12 T&E species in Florida, we used a variable 
selection process to identify which monthly 
temperature and precipitation variables were most 
associated with species presences. We then used this set 
of variables to build models using both CRU and 
WorldClim datasets. 

Our results for these 12 species showed that neither 
model performance nor the prediction maps (for the 
current time period only) were significantly different 
depending on which contemporary climate dataset was 
used (Watling et al. 2014). Figure 4 displays an example 
of this for the Florida scrub jay (Aphelocoma 
coerulescens), showing that the broad patterns of the 
prediction maps using the two different contemporary 
climate datasets are very similar. Given this result, we 
found no reason to prefer either of the contemporary 
climate datasets, concluding that modelers can base 
their choice of dataset on practical aspects such as 
availability, spatial resolution, or geographic coverage. 

https://crudata.uea.ac.uk/cru/data/hrg/
http://www.worldclim.org/
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Figure 3. (Aphelocoma coerulescens). 
Credit: David Bucklin 

  

 
Figure 4. Present time period SDM prediction maps for the 
Florida scrub jay built using different contemporary climate 
datasets (CRU and WorldClim), showing high similarity.  
Credit: David Bucklin 

  

II. Choice of Future Climate Data 
There are many choices to make when choosing future 
climate data for projecting SDMs, due to the methods 
climate scientists use to create future climate 
projections. To predict climate in future decades and 
centuries, climate scientists employ global climate 
models (GCMs), which incorporate atmospheric, 
oceanic, land, sea ice, and other relevant components to 
simulate global climate patterns. Global climate models 
are complex and generally produce climate projections 
at coarse spatial scales (i.e., one projection every 100–
200 km; Maraun et al. 2010). There are several dozen 
GCMs currently in use around the world. In addition, to 
predict how increased levels of carbon dioxide (CO2) will 
affect future climate, each GCM can be run using 
multiple future "scenarios" describing different levels of 
atmospheric CO2. The combination of all these factors 
(GCM and CO2 scenario) creates a large number of 
unique projections of future climate for scientists to 
choose from. 

To test how much of an effect GCM choice has on SDMs, 
we projected the 12 species' SDMs (described in the 
previous section) into the future (2050) using 3 different 
GCMs. The results showed that discrepancies can occur 
among SDM prediction maps using different future 
GCMs, exemplified for the Florida scrub jay in Figure 5 
(Watling et al. 2014). The dissimilarity between SDMs 
prediction maps using different GCMs (in the future) 
was higher than that among contemporary prediction 
maps (Figure 4), indicating less similarity between 
future GCMs than between contemporary climate 
datasets. 

 
Figure 5. Future time period (2050) prediction maps from 
SDMs using three different GCMs (labeled in bottom left 
corner of each panel) for the Florida scrub jay. 
Credit: David Bucklin 

  

III. Global and Regional Climate 
Models 
Global climate models are useful for projecting climate 
changes over large areas (e.g., continents), but due to 
their coarse scale, less useful for representing local or 
regional climates—the scales at which conservation 
planning generally takes place. To address this issue, 
climate scientists often develop complex regional 
climate models (RCMs) to "downscale" (create higher-
resolution) projections from GCMs to much finer scales 
(e.g., one prediction every 1–50 km), but are limited to 
one region, using information on factors that influence 
the climate for that particular region. In contrast to 
RCMs, another method for downscaling GCMs is 
"statistical" downscaling, which uses statistical 
relationships between local and global factors 
influencing climate to downscale GCM projections (for 
either one region or the entire world), rather than 
developing a new climate model (as in RCMs). 

To test the effect of RCM vs. statistically downscaled 
future climate data used for SDMs, we obtained 
downscaled climate data from both RCM (Stefanova et 
al. 2012) and statistically-derived (non-RCM) datasets 
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(Tabor and Williams 2010) for 2 GCMs and one climate 
scenario. Both datasets have ~10-km resolution, and we 
restricted the analysis to the southeastern United States 
from 2041–2060. We then created models for 14 of 
Florida's T&E species and projected them using each of 
the four different representations of future climate. 

We found that the type of downscaled future climate 
data (RCM or non-RCM) contributed to moderate to high 
variation in the SDM prediction maps (Bucklin et al. 
2013). For example, for the Everglade snail kite 
(Rostrhamus sociabilis plumbeus), the SDM prediction 
map using non-RCM projections predicts loss of 
suitability throughout much of southern Florida, but 
one using RCM projections does not (Figure 5). 
Discrepancies between prediction maps using RCM vs. 
non-RCM projections were similar to discrepancies 
among maps using different GCMs projections (as 
displayed in Figure 4). In general, RCM and non-RCM 
projections tended to disagree more on future monthly 
precipitation projections than temperature. Because of 
the importance of water in many of Florida's eco-
systems, RCM projections (which offered more refined 
precipitation estimates than the non-RCM projections) 
should offer better SDM predictions for future suitable 
areas for Florida's wildlife. 

 
Figure 6. (Rostrhamus sociabilis plumbeus). 
Credit: Julio Mulero 
(https://www.flickr.com/photos/juliom/5431106652), 
License: CC-BY-NC-ND 2.0 

  

 
Figure 7. Future time period (2050) SDM prediction maps 
using non-RCM (left) and RCM (right) climate datasets for the 
Everglade snail kite, illustrating the absence of suitable 
conditions in southern Florida predicted by the non-RCM 
model.  
Credit: David Bucklin 

  

IV. Types of Climate Variables 
Another choice users of SDMs have to make is the type 
of climate variables to use in the modeling process. 
Contemporary climate datasets like CRU and WorldClim 
are often prepared as monthly averages (e.g., mean 
temperature in January, mean precipitation in May) or 
as bioclimate variables, which describe seasonal 
conditions and/or climate extremes (e.g., maximum 
temperature of the warmest month, precipitation of the 
driest season). Bioclimate variables are generally 
assumed to be more informative for SDMs because 
certain climatic extremes may be directly limiting to 
species due to tolerance limits for certain hot, cold, dry, 
or wet extremes. To test this assumption, we built SDMs 
using both monthly and bioclimate variables for 12 of 
Florida's T&E species, and predicted their distributions 
for the contemporary period only. 

We found no difference in the performance of models 
built with monthly vs. bioclimate variables (Watling et 
al. 2012). However, we did note some discrepancy in 
prediction maps for some species, like the American 
crocodile (Crocodylus acutus; Figure 8). In addition, for 
SDMs for species with large ranges, bioclimate variables 
may be preferable to monthly because of the differences 
in seasons between the northern and southern 
hemispheres (for example, the temperature in January 
represents mid-winter in the North, but mid-summer in 
the South, and a species occurring in both hemispheres 
would experience a wide range of conditions in the 
same calendar month). 
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Figure 8. (Crocodylus acutus). 
Credit: UF/IFAS 

  

 
Figure 9. Present time period SDM prediction maps for models 
built using monthly climate variables (left) and bioclimate 
variables (right) for the American crocodile, with greatest 
discrepancies in suitability found in extreme southern Florida 
and the Florida Keys. 
Credit: David Bucklin 

  

V. Inclusion of Non-Climate Variables 
While we know that climate is an important driver of 
species distributions, we also wanted to know how 
influential other (non-climate) variables could be in 
SDMs when used in combination with climate. To test 
this, we compared models built with climate variables 
only to those built with climate variables plus variables 
from several different sets (including land use, human 
influence, and extreme weather). Models were 
developed for 14 species that are endemic to Florida, for 
the contemporary climate period only. 

Using metrics that calculate how important individual 
variables are within a model, we found that climate 
variables were generally much more important than 
non-climate variables, regardless of which non-climate 
variables were combined with them (Bucklin et al. 

2015). Performance metrics were not highly variable 
among any of the models, though we did find that the 
climate + human-influence models performed 
significantly better than climate-only models, and that 
prediction maps from these two models were also the 
most different from one another. We also found that 
SDMs including non-climate predictors tended to 
produce more "refined" prediction maps (smaller 
suitable areas predicted), as illustrated by prediction 
maps for the sand skink (Neoseps reynoldsi) in Figure 10. 

 
Figure 10. (Neoseps reynoldsi). 
Credit: USGS 

  

 
Figure 11.Present time period SDM prediction maps for the 
Sand skink, using four different sets of input variables. In 
comparison to the climate variables only map (upper left), 
note the "refined" predictions in models including human 
influence variables (upper right), and to a lesser extent land 
cover variables (lower left). 
Credit: David Bucklin 
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VI. Bringing It All Together 
To get a unified view of what contributes most to 
variation in model performance and prediction maps, 
we conducted a comprehensive "uncertainty analysis" 
focusing on a number of choices of input data and 
modeling methods (some also addressed in previous 
sections), including: 

• Contemporary climate dataset (see section I) 
• Global Climate Models (GCMs; see section II) 
• CO2 emissions scenario 
• Algorithm 
• Variable selection process (uncorrelated vs. no 

removal of correlated variables) 

This analysis highlighted each factor's relative 
contribution to SDM variation (uncertainty). Models 
were run for 15 species for every combination of the 7 
factors, resulting in 48 different models and prediction 
maps for the contemporary period, and 288 prediction 
maps (48 × 6 future representations of climate) for the 
future time period (for each species). 

We found that model performance and spatial 
predictions were most affected by the modeling 
algorithm applied in the SDM, which strongly 
outweighed all other factors (Watling et al. 2015). (It is 
important to note, however, that in many SDM studies, 
modelers do not use more than one algorithm.) In 
prediction maps, though, a small amount of variation 
was also attributable to GCM (for future predictions) and 
the variable selection process (Figure 12). In addition, 
variation in the maps was greater in the northern edges 
of the species' ranges, a direction many of Florida's 
species are expected to move as the climate warms. 
These results give strong support for "ensemble" 
methods for SDMs. Ensemble methods account for 
uncertainty in a factor by combining models built with 
several different versions of the factor. For example, 
SDM users employing ensemble methods could 
combine prediction maps from multiple algorithms, 
GCMs, or even species (if they are considering how a 
group of species may respond to climate change). The 
ensemble method highlights areas of agreement (and 
disagreement) between models, giving users a higher 
level of certainty in their predictions. 

 
Figure 12. Boxplots showing the partitioning of variance (a 
measure of how strongly a factor contributes to variation in 
model outputs) associated with seven sources of uncertainty 
in species distribution models, indicating that algorithm is a 
major source of variation in species distribution models. 
Credit: Adapted by authors from Watling et al. (2015) 

  

Conclusion 
While SDMs rely on simplified assumptions about 
species' relationships with their environment, they are 
still an important tool for understanding how wildlife 
may respond to environmental changes, and in 
particular climate change. This document has 
summarized how certain input data and modelling 
choices can affect SDM outputs for T&E and endemic 
species in Florida. Our results regarding the strength of 
the effect of each choice on model outputs (both model 
performance metrics and prediction maps), and 
recommendations regarding each of these choices are 
given in Table 1. 

Results of this work suggest that scientists building 
SDMs for estimations of wildlife responses to future 
climate change should focus on using a multiple-
algorithm ensemble to project the models for several 
different representations of future climate. For regional 
studies, it can be beneficial to use higher-resolution 
regional climate model (RCM) datasets, when available. 
In addition, non-climate variables can contribute 
important information to SDMs, especially when 
modelers have specific knowledge about how these 
variables relate to the species, and want more specific 
range predictions. 
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With a better understanding of the factors that influence 
SDM performance and predictions, we can provide 
better estimates of certainty for SDM predictions. SDMs 
can generally predict how areas of suitable climate may 
change for a certain species, but they alone cannot tell 
us how a certain species will actually respond to 
changes in climate. In general, a species may respond to 
climate change in three ways: adjust to new conditions 
in-place, move to new areas with suitable climates, or go 
extinct. For some species (e.g., those with ranges 
restricted to small islands), moving to new areas may 
not be an option. SDMs can inform conservation 
planning that aims to allow species to both adapt in 
place and (for those that are able to) move to newly 
suitable areas. Such planning will likely minimize loss 
of biodiversity due to climate change. 
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Tables 

Table 1. Choices related to SDM variables and the modeling process, the sections that cover each choice in this 
document, the strength of the choice's effects on SDM outputs, and recommendations for SDM users based on work 
focused on Florida's T&E and endemic species. 

Species distribution 
model choice related to... 

Section(s) in this 
document 

Strength of effect 
on SDM outputs 

Recommendation(s) 

Input data    

Contemporary climate 
data 

I, VI Minor Use WorldClim, CRU (or similar) long-term climate 
dataset 

Future climate data II, III, VI Strong Use RCMs for regional studies; use ensemble methods to 
combine predictions from multiple GCMs/RCMs 

Type of climate variables IV Minor Use either bioclimate or monthly variables; bioclimate 
preferred for species with large ranges 

Non-climate variables V Moderate Combine with climate for more specific range predictions 

Modeling methods    

Algorithm VI Strong Build models using more than one algorithm; use 
ensemble methods to combine predictions from multiple 
algorithms 

Variable collinearity VI Minor Dependent on algorithm, but generally good practice to 
remove highly correlated variables for SDMs used for 
prediction 
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